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I.  BACKGROUND
This second quarterly report covers progress on the subject

contract from March 1, 1982 to June 1, 1982.

As discussed in great detail in the first quarterly report, the

objective of the research program is to determine the lateral forces

on artificial islands and offshore structures which are subject to
moving sea ice. This is the major factor governing the design of
offshore facilities for petroleum production in the Beaufort, Chukchi,

and Bering Seas, a frontier province which encompasses some 262 million

- acres with a risked mean 0il equivalent of 30.8 billion barrels.

The approach taken is to measure the internal ice stress at rela-
tively large distances from such islands, to measure the ice displace-
ment simultaneously, and to determine the effective island width during
ridgebuilding events. These events, which fracture the ice adjacent
to the islands and structures, represent those time intervals when
maximum total forces may be exerted on such man-made structures. They
represent the extreme design condition. Although very high Tlocal
forces may disturb the gravel or rock slopes of artificial islands,
this can be repaired. A more significant issue is whether the lateral
resistance to movement of the entire artificial island or offshore
structure is sufficient to withstand the maximum total force exerted
by the moving ice. Allowance must be made for the thickest ice and
the highest velocity of ice movement expected during the operating life
of the production facility. A thorough discussion of current practice

in such designs is given in the first quarterly report.
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II. EXPERIMENTAL PROGRAM

During the second quarter, calibration of the electronic data
telemetry system was completed. Progress was made on the calibration
of the stress sensors within ice blocks, as well. A loading press
capable of hand1ing cubic ice samples nineteen inches on each side
was made available to us at no charge by the Research Division of the

Alaska Department of Transportation and Public Facilities. An aluminum

- fixture was designed to produce ice blocks which would fit within this

uniaxial Toading press. This ice block mold was constructed, and success-
fully tested. Special waterproofing coatings for the ice gauges were
tested and successfully withstood brine immersion for several weeks

with no deterioration. The uniaxial gauges were coated, and fixtured

to be frozen into the ice blocks.

Additional theoretical developments were completed during the

second quarter which pointed to the need for calibration of the uniaxial

sensors at several angles other than 0°, 45°, and 90°. As is described
in the next chapter, to properly ascertain the direction of the princi-
pal stresses from uniaxial stress gauge data, the calibration of the
stress concentration factor a(6) must be obtained experimentally. Ang]es
of 30° and 60° are also planned for the calibration sequence. Such

tests are proceeding dufing the next quarter,

A closer examination of the system alternatives for ice positioning
revealed that two competing systems, the Motorola Mini-Ranger and the
Raco]—Decca, should be evaluated. A comparison of the two systems,
detai]-by-detai], is being done and will be completed soon,
| It appears that the installation of either system will be for a

field season of several months duration, implying that it will be more
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economical to purchase the positioning system rather than obtaining it
on a lease arrangement,

Discussions with Shell 0i1 Company personnel about the possibilities
of 1982-83 deployment near their SEAL artificial island location in 39
feet of water resulted in a favorable response, and formal Shell manage-
ment appkova] has been requested.

An initial theoretical analysis was completed for both types of

gauges, and it is presented in the following section.
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III. DETERMINING STRESSES AND STRAINS IN AN ICE SHEET USING A

UNIAXTAL STRESS SENSOR AND A TRI-AXIAL STRAIN SENSOR
Two différent methods will be used in ihis study to measure stresses
and strains in an ice sheet. Stresses in a biaxial field will be measured
using a rosette of three stress transducers oriented at 45° from one
another. This configuratfon can be used to resolve the direction and

magnitudes of an acting two-dimensional stress field. The basic assumption

~ for using a rosette of sensors is that stresses act in the plane of an

ice sheet and that out-of-plane stresses are negligible. This assumption
has not been proven by past measurements. An effort also will be made during
this study to measure the three-dimensional strain field for an ice sheet
and infer the corresponding stress field for short-term loading. The in-
plane and out-of-plane strains/stresses can be determined from the three-
dimensional measurements.

A brief description of the two sensors used in this study and the
methods used to interpret their output is presented in the following.
The calibration requirements and interpretation methods for the uniaxial
stress sensor are presented first. The equations needed to interpret the

tri-axial strain transducer are described in Section 2.
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Uniaxial Stress Sensor

The uniaxial stress sensor is a stiff transducer designed to measure
stresses in ice. The operation and design characteristics of the sensor
have been described previously (Nelson and others, 1977). Nelson showed
that the sensor exhibits strong stress concentration and transverse sensi-
tivity characteristics. He assumed that the stress concentration factor
for the sensor was constant with respect to the orientation of the sensor
to the principal stress direction. Savin (1961), however, has shown that
an inclusion with the general shape of such a gauge has a stress concentra-
tion factor that is dependent on the orientation of the sensor with respect
to the principal stresses. This section presents the basic equations
needed to interpret the results of the uniaxial gauge and discusses the
required calibrations for the sensor.

Calibration tests for the uniaxial sensor have demonstrated thét it has
a large stress concentration factor and transverse sensitivity (Nelson and
others, 1977). This can be described (for a uniaxial stress. field, o2 = 0)

by

(1) Tom = @ 91 cosls + B oq sin2 8 where

oom is the stress determined from sensor measurements, a is the stress

concentration factor ogp/oy, o1 is the applied stress, 8 is the
transverse sensitivity coefficient ogy/c] at © = 90° and @ is the

orientation of the sensor with respect to the applied stress field (Figure 1).
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Figure 1

The transverse sensitivity coefficient is primarily the result of a Poisson's

ratio effect in the ice and can be assumed to be a constant value. The

stress concentration factor, a, does, however, depend on © and this dependence
can influence the interpretation of results. Both 8 and «(0) must be
determined during the calibration of the sensor if‘meanjngful results are

to be obtained. The transverse sensitivity can be determined by orienting

the sensor at 90° to the applied load and calculating g8 from
(2) B = Oom/O’l at 9 = 90°.

The stress concentration coefficient, a(8), must be determined over the range
0 < o< w/2 so that the measured stress can be used to calculate the applied
stress. Once 8 has been determined equation 1 can be used to calculate a(@)

at various orientations to the applied field
(3)  «(8) = (ogy - 8 o1 sin? @)/(oq cos?8) @ 0< 8 < 7/2
(4) «afn/2) =0 @o =u/2

The coefficients a(@) and 8 can now be determined from a setbof
calibration tests and equations 2 and 3.
An additional set of equations is needed to interpret the readings

from sensors imbedded in ice that are subjected to biaxial loading.
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Equation 1 can be expanded to include the effects of a biaxial stress

field

(5)  ogn = al8) oy cos? 6 +a((n/2)-8) o, sin? o +
B(oq sinZ ¢ + g cos? 8).

This can be rewritten as

#

(6) oom = [(a(8)+8)or+(a((n/2)-0)+8)0p]/2 +
[(a(6)-8)o1-(a((n/2)-8)-8)op] (cos8)/2

An array of three sensors is needed to resolve a biaxial stress field

in ice. Typically the sensors are oriented at 45° angles from each other

(Figure 2).

Figure 2

The stresses acting on each sensor can be determined using equation 6.

(7). oom1 = [(a(8)+8)o1+(ap((x/2)-6)+B)02]/2
+ [(a(8)-8)o1-(a((n/2)-8)-B)ap] (cos 20)/2

(8) oom2 = [(a(e + (v/4)) + B)oy + (a((n/4)-0)+8)02]/2
+ [(a(8+r/8)-8)o1-(a(n/4-8)-8)a2] (cos 2 (8 + (n/4)))/2

(9)  oom3 = [(a(6+(n/2))+8)o1+(a()+8)ap]/2

+ [{a(6+(n/2))-8)o1-(a(6)-B)op] (cos 2 (8+(n/2)))/2
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It is apparent from equations 7-9 that the éystem of equations for a three
sensor array ccan be complex. There is no straightforward way to eliminate
the different a values from the equation to solve for o and then for a1

and op. At this point one should réfer to the calibration curve for o to
determine how significantly «(o) varies with ©. If the variation is slight
then it may be worthwhile to assume that «(0) is constant and solve for

0, o1 andvcg in the usual fashion. 1In such a case equations 7-9 can be

rewritten as

(10)  oom1 = (a+B) (01+02)/2 + (a-B) (01-0p) cos 28/2
(11)  oom2 = (a+8)(01+92)/2 - (a-8) (01-02) sin 28/2
(12)  oop3 = (a+8) (01+02)/2 - (a-8) (61-02) cos 28/2

Equations 10-12 can now be solved giving
(13)' Tan 20 = (ooml - 2 dom2 + 9om3)/ (soml - %om3)

(o6m + oom3)/(a+8)

(14) o1 + 02

(15) o7 -0y [("oml""om3)2 +

(oom1 * %om3 - 2°om2)2]1/2/(°“3)

However, if «(@) does vary strongly with orientation then © may be determined
by some other means (for example separate surface strain measurements). Once
© is known, then o1 and o3 can be determined from two sensor readings
and any two of equations 7-9. ‘For two sensors oriented at 90 degrees from each
other a solution of
[(«(8)+8) + (a(8)-B) cos26]/2

[(a((n/2)-8)+8)-(a((n/2)-6)-8)cos28]/2
[a(o+(n/2))+8)+{a(8+(n/2))-B) cos2(e+(n/2))]/2
| [(a(6)+8)-(a(0)-8) cos2(s+(n/2))1/2
- °1 J_

Soml

92 Iom2
will give a7 and ag. ' 8
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Circular Ribbon and Triaxial Strain/Stress Sensor

The triaxial strain/stress sensor consists of three circular ribbons
of metal to which strain sensors have been attached at 126o spacings. By
monitoring the tangential strain in a hoop, the principal strains/stresses
in the plane of the hoop can be determined. The complete strain/stress
field in a three-dimensional body can be determined when three hoops oriented
in different directions are imbedded in the object.

Two separate solution sets are needed to determine the three-dimensional
strain/stress field from the ribbon hoops. The first set of equations is
used to determine the principal strains and their orientations in the plane
of the hoop for each sensor. These measurements are then used to develop a
system of four equations with three unkqowns. The three unknowns and
estimates of their accuracy are determined using standard matrix inversion
techniques.

The solutions for resolving the strain/stress field from tangential
strain measurements using the ribbon sensors are presented below. The
formulas needed to resolve the two-dimensional principal strains are treated
first. Next the equations for resolving the three-dimensional strain field
are presented and used to calculate stresses assuming an elastic response

for ice.
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Determining Principal Strains in the Plane of a Ribbon Sensor in Ice

The thin flexible nature of the ribbon sensor means that one can assume
that the sensor deforms with the ice (that is the sensor responds to strain).
The deformation of the sensor can then be related to the principal strains

in the ice by

(16) ey
(17)  <p

(€p+€q)/2 + (€p-€q) (COSZG)/Z,

(epeq)/2 - (sp-eq) (cos28)/2

(18) epp = -(sp=q) (sin)/2,

where ey, €g, €pg are the radial, tangential and shear strains in the
ribbon sensor. The principal strains in the ice are €p and eq where

ep > €q and @ is the angle between the p axis and the r axis (Figure 3).

Figure 3

Equation 17 can be used to resolve the principal strains using tangential

~ strain sensors on a hoop. For three strain sensors spaced 120° apart

equation 17 provides three equations

(19) €91 F (€p+€q)/2 - (€p-€q) (COSZG)/Z
(20) eg2 = (sp-i-eq)/z + (ep-eq) ((cos28)/2-/3/2 sin2e)/2
(21) eg3 = (epteq)/2 + (sp-sq) ((cos28)/2 + V3/2 sin2e)/2

10
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where eg1, €52, €93 refer to the strains at locations 1, 2 and 3 in

Figure 4

Figure 4

The above three equations can be s

and £q and the orijentation 6 from an ar

(22) © = 1/2 Tan"! [77 (eqp-cq3)/(2¢4
(23) epteq = 2/3 (eq1 + €92 +€g3)
(24) (sp-eq) = [4/3 (892-663)2 + 4/9

Equations 22-24 are used to solve for t
each sensor. These can then be used to

strain field by using the relations
(25) ey;='£%ex+m§ ey+n§ € +2mon, €xy
| 2% omo Exy v
(26) e, e+ md ey+n§ e ¥2m3ng €yy
23M3 exy
(27)  eyrzi=tp03 exmom3 eyHony e +(m
(n2234n302) ezx+(2om3+i3ma) exy
where ey1, €71 and ey1z1 are the normal
plane whose direction cosines from the
are given by (21, m1, n1), (22, m2 np),
(Jaeger and Cook, 1979).

olved for the principal strains €p

bitrary set of axes.

1-€g2-€93) ]

(2241-c02-¢03) 211/ 2.

he principal strains in the plane of

determine the three-dimensional

tangty et

NP3 ey t

gn3+mgng) ey +

and shear strains to a
reference coordinate system Oxyz

(23, m3, n3) (Figure 5)

11
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Figure 5
(From Jaeger and Cook, 1979)
Equations 25-27 are used by arbitrarily setting a reference coordinate system Oxyz |
- to correspond to one of the principal axes determined from ribbon sensor
measurements and equations 22-24. The strains €y, €z are known and €yz
= 0 for the principal strain axis system. In the following presentation
€yls €21, €2yl = 0 refer to the strains in the principal strain
system determined from measurements of ribbon sensor 1. The princip31
strains from the remaining sensors are €y2s €22, €yz2 = 0; €y3s
€23» €zy3= 0 for ribbon sensors 2 and 3 respectively. Using Equations

25-27 gives

(28)  epp= %sxﬁnfsy1+n%szl+2nlz 1€ 2% *20MyE gy

(29) s22=z§sx+m§sy1+n§eZl+2nzzzezx+222m2exy

(30) 0 =122 gexi:mlmzeyﬁn 1noe 21-‘4-(n 142081 Je gy +
(21m2+22m1)sxy

which are three equations for unknowns €x» €xys €zx. However, the
determinant for these equations vanishes, so that they are not independent.

The measurements from the third ribbon sensor can be used to provide the

additional equations -

(31)  ey3 = Z§€x+m§€y1+n§€zl+2',‘,3”'3‘:zx+2”'3m3€xy
(32) e,3 = zgex*m§€y1+"§€zl+2"4£4€zx+224m4exy

12
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(33) 0=-23 % 4ex Hm3Mge ytn3nge z1+(n3L4+N42 3 ) zx+

(2 3mg+2 gm3)exy

Equations 28, 29, 31 and 32 can now be used to solve for the three unknowns
and also give an estimate to the accuracy of the measurement as described
in Fung, 1977). The strain field for the body is given by
€x €xy €xz L.
81'\]' = eyx ey]_ O 1, = -1,2,3
exz 0 ez1
The principal strains in three dimensions are now determined in the standard
fashion as follows. First solve
(€X“E) Exy €XZ
IE-jj - Ex 5“‘] = €yx (eyl-E) 0 = 0
: €xz 0" (ez1-E)
which is a cubic equation in E. E has three real roots, which are the
principal strain magnitudes, such that €] > ep > e3. The orientation
of the principal strain axis system from the Oxyz system is determined by

the direction cosines LpKs MpK> NpK- These are determined by solving

' (ex-ek)  exy exz % pK
(eij-e(k) SijInj(K) = Eyx (egl-eK) 0 mpk| =0
€ zx (ez1-ek) NpK

where K = 1, 2, 3
which gives three sets of direction cosines &p1, mp1, Np, Lp2> Mp2, Np2,
2p3s> Mp3, Np3, describing the orientation of the principal stress axis
from the Oxyz axis. |
The principal strains and direction cosines completely describe the
three-dimensional strain field of the ice. If a further assumption is made

that the deformation in the ice is of short duration and not permanent then

13
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the ice can be treated as an elastic material. The three-dimensional principal

stress field can be calculated from

W

61 =X (eq1tepte3)+n e
0 = X (e1tepte3)+2u €
03 = X (e1teo+e3)+2u 3

where A and u are material properties of the ice which is assumed to be iso-
tropic, homogeneous and behave in a linear e1astic,faShion. The direction
cosines for the stress system are colinear to those of the principal strain
system.

The results of this development assume that infinitesimal strain
theory is valid. If the ice experiencos significant plastic deformation
then the result of this section cannot be used to determine the stress from

the output of the'ribbon strain sensors, and further analysis is needed. The

anisotropy of sea ice should also be taken into account in a more detailed

analysis.

14
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IV. PLANS FOR THIRD QUARTER

The sequence of calibrations of the uniaxial and the ring gauges
will continue in ice blocks. An evaluation of the positioning system
alternatives will be completed.

Theoretical analysis of the uniaxial gauge behavior will concen-
trate upon a computer method of solving for direction and magnitude of
principal stresses once the data from the gauges is provided. Some
additional attention will be given to specific solutions for the
stresses as derived from data taken with the array of three ring gauges.
The questions’of plastic flow in ice, and also the known anisotropy of
sea ice, will be considered insofar as they would affect the output of

the gauges and its proper interpretation,

15
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